
Chapter # 9
LEX and YACC

Dr. Shaukat AliDr. Shaukat Ali

Department of Computer Science

University of Peshawar

Lex and Yacc

 Lex and yacc are a matched pair of tools.

 Lex breaks down files into sets of "tokens,"
roughly analogous to words.

 Yacc takes sets of tokens and assembles them
into higher-level constructs, analogous to into higher-level constructs, analogous to
sentences.

 Lex's output is mostly designed to be fed into
some kind of parser.

 Yacc is designed to work with the output of Lex.

2

Lex and Yacc

 Lex and yacc are tools for building programs.
 Their output is itself code

– Which needs to be fed into a compiler

– May be additional user code is added to use the code
generated by lex and yaccgenerated by lex and yacc

3

Lex : A lexical analyzer generator

 Lex is a program designed to generate
scanners, also known as tokenizers, which
recognize lexical patterns in text

 Lex is an acronym that stands for "lexical
analyzer generator.“analyzer generator.“

 The main purpose is to facilitate lexical analysis
 The processing of character sequences in source

code to produce tokens for use as input to other
programs such as parsers

 Another tool for lexical analyzer generation is
Flex 4

Lex : A lexical analyzer generator

 lex.lex is an a input file written in a language which describes the
generation of lexical analyzer. The lex compiler transforms lex.l to a
C program known as lex.yy.c.

 lex.yy.c is compiled by the C compiler to a file called a.out.

 The output of C compiler is the working lexical analyzer which takes
stream of input characters and produces a stream of tokens.

5

Lex: A lexical analyzer generator

6

Lex: A lexical analyzer generator

 Lex file has three sections.
 The first is sort of "control" information,

 The second is the actual token or grammar rule
definitions,

 The last is C code to be copied verbatim to the output.
7

Lex: A lexical analyzer generator

 Lines 1 through 3 are more C code to be copied.
 In the control section, you can indicate C code to

be copied to the output by enclosing it with "%{"
and "%}“
– This section includes include files, declaration of – This section includes include files, declaration of

variables, and constants

 We wouldn't need one at all if we didn't use cout in
the middle section

 Line 4 is "%%", which means we're done with the
control section and moving on to the token
section.

8

Lex: A lexical analyzer generator

 Lines 5-8 are all the same (simple) format: they
define a regular expression and an action (code
segment).
 Form : Pattern {Action}

– Pattern is regular expression and action is code segment– Pattern is regular expression and action is code segment

 When lex is reading through an input file and can
match one of the regular expressions, it executes
the action.

 The action is just C++ code that is copied into the
eventual lex output
– You can have a single statement or you can have

curly braces with a whole bunch of statements. 9

Lex: A lexical analyzer generator

 Line 9 is another "%%" delimiter, meaning we're done
with the second section and we can go onto the third.

 Lines 10-13 are the third section, which is exclusively for
copied C code.

 main() function – containing important call to yylex() main() function – containing important call to yylex()
function

 Additional functions which are used in actions

 These functions are compiled separately and
loaded with lexical analyzer in the Lex output file

10

Lex: A lexical analyzer generator

 Lexical analyzer produced by lex starts its
process by reading one character at a time until
a valid match for a pattern is found

 Once a match is found, the associated action
takes place to produce tokentakes place to produce token

 The token is then given to parser for further
processing

11

Lex: A lexical analyzer generator

 Operators : " \ [] ˆ - ? . * | () $ / { } % < >

 Letters and digits match themselves

 Period ‘.’ matches any character (except
newline)

 Brackets [] enclose a sequence of characters,
termed a character class. This matches:
 Any character in the sequence

 A ‘-’ in a character class denotes an inclusive range,
– e.g.: [0-9] matches any digit.

 A ˆ at the beginning denotes negation: [ˆ0-9] matches
any character that is not a digit.

12

Lex: A lexical analyzer generator

 A quoted character " " matches that character.

 \n, \t match newline, tab.

 parentheses () grouping

 Bar | alternatives Bar | alternatives

 Star * zero or more occurrences

 + one or more occurrence

 ? zero or one occurrence

13

Operators

14

Lex: A lexical analyzer generator

15

Lex: A lexical analyzer generator

16

Lex: A lexical analyzer generator

A quick tutorial on yacc 17

A quick tutorial on yacc 18

Lex: A lexical analyzer generator

 This example can be compiled by running this:

% lex snazzle.lex

 This will produce the file "lex.yy.c", which we can
then compile with g++:

% g++ lex.yy.c -lfl -o snazzle

 Notice the "-lfl", which links in the dynamic lex
libraries

19

Lex: A lexical analyzer generator
 You should be able to run it and enter stuff on STDIN to be lexed:

% ./snazzle

90

Found an integer:90

23.4

Found a floating-point number:23.4

4 5 6

Found an integer:4

Found an integer:5

Found an integer:6

this is text!

Found a string: this

Found a string: is

Found a string: text

!
20

Yacc: Overview

Parser generator:
 Takes a specification for a context-free grammar.

 Produces code for a parser.

21

Input: a set of
grammar rules
and actions

Output: C code
implementing a parser:

function: yyparse()

file [default]: y.tab.c

yacc

(or bison)

Using Yacc

flex yacc

lexical rules grammar rules

“yacc -d” y.tab.h

describes
states,
transitions
of parser
(useful for
debugging)

y.output

“yacc -v”

22

yylex() yyparse()input
tokens parsed

input

lex.yy.c y.tab.c

“yacc -d” y.tab.h

Communication between Scanner
and Parser

 Yacc determines integer representations for tokens:
 Communicated to scanner in file y.tab.h

– use “yacc -d” to produce y.tab.h
 Token encodings:

– “end of file” represented by ‘0’;
– A character literal: its ASCII value;

A quick tutorial on yacc 23

– A character literal: its ASCII value;
– Other tokens: assigned numbers 257.

 Parser assumes the existence of a function ‘int yylex()’
that implements the scanner.

 Scanner:
 Return integer value indicates the type of token found
 Values communicated to the parser using yytext, yylval
 yytext determines lexeme of a token and yylval determines a

integer assigned to a token
 The token error is reserved for error handling

Communication between Scanner
and Parser

24

yacc: input format

A yacc input file has the following structure:

definitions
%%
rules optional

required

25

rules
%%
user code

optional

Shortest possible legal yacc input:

%%

int yyparse()

 Called once from main() [user-supplied]

 Repeatedly calls yylex() until done:
 On syntax error, calls yyerror() [user-supplied]

 Returns 0 if all of the input was processed;

26

 Returns 1 if aborting due to syntax error.

Example:

int main() { return yyparse(); }

Yacc: Grammar Rules

 Information about tokens:
 Token names:

– Declared using ‘%token’
%token name1 name2 ...

– Any name not declared as a token is assumed to be a
nonterminal.

27

nonterminal.

 Start symbol of grammar, using ‘%start’ [optional]
%start name

– If not declared explicitly, defaults to the nonterminal on the
LHS of the first grammar rule listed

 Stuff to be copied verbatim into the output (e.g.,
declarations, #includes): enclosed in %{ … }%

Yacc: Grammar Rules

Rule RHS can have arbitrary C code embedded,

Grammar production yacc rule

A B1 B2 … Bm

B C1 C2 … Cn

C D1 D2 … Dk

A: B1 B2 … Bm ;

B: C1 C2 … Cn ;

C: D1 D2 … Dk ;

; /* ‘;’ optional, but advised */

28

 Rule RHS can have arbitrary C code embedded,
within { … }. E.g.:

A : B1 { printf(“after B1\n”); x = 0; } B2 { x++; } B3;

 Left-recursion more efficient than right-recursion:
– A : A x | … rather than A : x A | …

Specifying Operator Properties

 Binary operators: %left, %right, %nonassoc:
 Associativity of operator

%left '+' '-'

%left '*' '/'

%right '^'

Operators in the same group
have the same precedence

Across groups, precedence

29

 Unary operators: %prec

 Changes the precedence of a rule to be that of the token
specified. E.g.:

%left '+' '-'

%left '*' '/'

Expr: expr ‘+’ expr

| ‘–’ expr %prec ‘*’

| …

Across groups, precedence
increases going down.

Specifying Operator Properties

 Binary operators: %left, %right, %nonassoc:
%left '+' '-'

%left '*' '/'

%right '^‘

Operators in the same group
have the same precedence

30

 Unary operators: %prec

 Changes the precedence of a rule to be that of the token
specified. E.g.:

%left '+' '-'

%left '*' '/‘

Expr: expr ‘+’ expr

| ‘–’ expr %prec ‘*’

| …

Specifying Operator Properties

 Binary operators: %left, %right, %nonassoc:
%left '+' '-'

%left '*' '/'

%right '^‘

Operators in the same group
have the same precedence

Across groups, precedence

31

 Unary operators: %prec

 Changes the precedence of a rule to be that of the token
specified. E.g.:

%left '+' '-'

%left '*' '/'

Expr: expr '+' expr

| '–' expr %prec '*'

| …

Across groups, precedence
increases going down.

The rule for unary ‘–’ has the
same (high) precedence as ‘*’

Yacc: Error Handling

 The “token” ‘error’ is reserved for error handling:
 Can be used in rules;

 Suggests places where errors might be detected
and recovery can occur.

32

Example:

stmt : IF '(' expr ')' stmt

| IF '(' error ')' stmt

| FOR …

| …

Intended to recover from errors in ‘expr’

Error Messages

 On finding an error, the parser calls a function
void yyerror(char *s) /* s points to an error msg */

 user-supplied, prints out error message.

33

 More informative error messages:
 int yychar: token no. of token causing the error.

 user program keeps track of line numbers, as well
as any additional info desired.

Error Messages: example

#include "y.tab.h"
extern int yychar, curr_line;
static void print_tok()
{

if (yychar < 255) {
fprintf(stderr, "%c", yychar);

}

void yyerror(char *s)

{

fprintf(stderr,

"[line %d]: %s",

curr_line,

s);

34

}
else {

switch (yychar) {
case ID: …
case INTCON: …
…
}

}
}

print_tok();

}

Adding Semantic Actions

 Semantic actions for a rule are placed in its
body:
 an action consists of C code enclosed in { … }

 may be placed anywhere in rule RHS

35

Example:

expr : ID { symTbl_lookup(idname); }

decl : type_name { tval = … } id_list;

 End of Chapter # 9

36

