
Chapter # 9
LEX and YACC

Dr. Shaukat AliDr. Shaukat Ali

Department of Computer Science

University of Peshawar

Lex and Yacc

 Lex and yacc are a matched pair of tools.

 Lex breaks down files into sets of "tokens,"
roughly analogous to words.

 Yacc takes sets of tokens and assembles them
into higher-level constructs, analogous to into higher-level constructs, analogous to
sentences.

 Lex's output is mostly designed to be fed into
some kind of parser.

 Yacc is designed to work with the output of Lex.

2

Lex and Yacc

 Lex and yacc are tools for building programs.
 Their output is itself code

– Which needs to be fed into a compiler

– May be additional user code is added to use the code
generated by lex and yaccgenerated by lex and yacc

3

Lex : A lexical analyzer generator

 Lex is a program designed to generate
scanners, also known as tokenizers, which
recognize lexical patterns in text

 Lex is an acronym that stands for "lexical
analyzer generator.“analyzer generator.“

 The main purpose is to facilitate lexical analysis
 The processing of character sequences in source

code to produce tokens for use as input to other
programs such as parsers

 Another tool for lexical analyzer generation is
Flex 4

Lex : A lexical analyzer generator

 lex.lex is an a input file written in a language which describes the
generation of lexical analyzer. The lex compiler transforms lex.l to a
C program known as lex.yy.c.

 lex.yy.c is compiled by the C compiler to a file called a.out.

 The output of C compiler is the working lexical analyzer which takes
stream of input characters and produces a stream of tokens.

5

Lex: A lexical analyzer generator

6

Lex: A lexical analyzer generator

 Lex file has three sections.
 The first is sort of "control" information,

 The second is the actual token or grammar rule
definitions,

 The last is C code to be copied verbatim to the output.
7

Lex: A lexical analyzer generator

 Lines 1 through 3 are more C code to be copied.
 In the control section, you can indicate C code to

be copied to the output by enclosing it with "%{"
and "%}“
– This section includes include files, declaration of – This section includes include files, declaration of

variables, and constants

 We wouldn't need one at all if we didn't use cout in
the middle section

 Line 4 is "%%", which means we're done with the
control section and moving on to the token
section.

8

Lex: A lexical analyzer generator

 Lines 5-8 are all the same (simple) format: they
define a regular expression and an action (code
segment).
 Form : Pattern {Action}

– Pattern is regular expression and action is code segment– Pattern is regular expression and action is code segment

 When lex is reading through an input file and can
match one of the regular expressions, it executes
the action.

 The action is just C++ code that is copied into the
eventual lex output
– You can have a single statement or you can have

curly braces with a whole bunch of statements. 9

Lex: A lexical analyzer generator

 Line 9 is another "%%" delimiter, meaning we're done
with the second section and we can go onto the third.

 Lines 10-13 are the third section, which is exclusively for
copied C code.

 main() function – containing important call to yylex()  main() function – containing important call to yylex()
function

 Additional functions which are used in actions

 These functions are compiled separately and
loaded with lexical analyzer in the Lex output file

10

Lex: A lexical analyzer generator

 Lexical analyzer produced by lex starts its
process by reading one character at a time until
a valid match for a pattern is found

 Once a match is found, the associated action
takes place to produce tokentakes place to produce token

 The token is then given to parser for further
processing

11

Lex: A lexical analyzer generator

 Operators : " \ [] ˆ - ? . * | () $ / { } % < >

 Letters and digits match themselves

 Period ‘.’ matches any character (except
newline)

 Brackets [] enclose a sequence of characters,
termed a character class. This matches:
 Any character in the sequence

 A ‘-’ in a character class denotes an inclusive range,
– e.g.: [0-9] matches any digit.

 A ˆ at the beginning denotes negation: [ˆ0-9] matches
any character that is not a digit.

12

Lex: A lexical analyzer generator

 A quoted character " " matches that character.

 \n, \t match newline, tab.

 parentheses () grouping

 Bar | alternatives Bar | alternatives

 Star * zero or more occurrences

 + one or more occurrence

 ? zero or one occurrence

13

Operators

14

Lex: A lexical analyzer generator

15

Lex: A lexical analyzer generator

16

Lex: A lexical analyzer generator

A quick tutorial on yacc 17

A quick tutorial on yacc 18

Lex: A lexical analyzer generator

 This example can be compiled by running this:

% lex snazzle.lex

 This will produce the file "lex.yy.c", which we can
then compile with g++:

% g++ lex.yy.c -lfl -o snazzle

 Notice the "-lfl", which links in the dynamic lex
libraries

19

Lex: A lexical analyzer generator
 You should be able to run it and enter stuff on STDIN to be lexed:

% ./snazzle

90

Found an integer:90

23.4

Found a floating-point number:23.4

4 5 6

Found an integer:4

Found an integer:5

Found an integer:6

this is text!

Found a string: this

Found a string: is

Found a string: text

!
20

Yacc: Overview

Parser generator:
 Takes a specification for a context-free grammar.

 Produces code for a parser.

21

Input: a set of
grammar rules
and actions

Output: C code
implementing a parser:

function: yyparse()

file [default]: y.tab.c

yacc

(or bison)

Using Yacc

flex yacc

lexical rules grammar rules

“yacc -d”  y.tab.h

describes
states,
transitions
of parser
(useful for
debugging)

y.output

“yacc -v”

22

yylex() yyparse()input
tokens parsed

input

lex.yy.c y.tab.c

“yacc -d”  y.tab.h

Communication between Scanner
and Parser

 Yacc determines integer representations for tokens:
 Communicated to scanner in file y.tab.h

– use “yacc -d” to produce y.tab.h
 Token encodings:

– “end of file” represented by ‘0’;
– A character literal: its ASCII value;

A quick tutorial on yacc 23

– A character literal: its ASCII value;
– Other tokens: assigned numbers  257.

 Parser assumes the existence of a function ‘int yylex()’
that implements the scanner.

 Scanner:
 Return integer value indicates the type of token found
 Values communicated to the parser using yytext, yylval
 yytext determines lexeme of a token and yylval determines a

integer assigned to a token
 The token error is reserved for error handling

Communication between Scanner
and Parser

24

yacc: input format

A yacc input file has the following structure:

definitions
%%
rules optional

required

25

rules
%%
user code

optional

Shortest possible legal yacc input:

%%

int yyparse()

 Called once from main() [user-supplied]

 Repeatedly calls yylex() until done:
 On syntax error, calls yyerror() [user-supplied]

 Returns 0 if all of the input was processed;

26

 Returns 1 if aborting due to syntax error.

Example:

int main() { return yyparse(); }

Yacc: Grammar Rules

 Information about tokens:
 Token names:

– Declared using ‘%token’
%token name1 name2 ...

– Any name not declared as a token is assumed to be a
nonterminal.

27

nonterminal.

 Start symbol of grammar, using ‘%start’ [optional]
%start name

– If not declared explicitly, defaults to the nonterminal on the
LHS of the first grammar rule listed

 Stuff to be copied verbatim into the output (e.g.,
declarations, #includes): enclosed in %{ … }%

Yacc: Grammar Rules

Rule RHS can have arbitrary C code embedded,

Grammar production yacc rule

A  B1 B2 … Bm

B  C1 C2 … Cn

C  D1 D2 … Dk

A: B1 B2 … Bm ;

B: C1 C2 … Cn ;

C: D1 D2 … Dk ;

; /* ‘;’ optional, but advised */

28

 Rule RHS can have arbitrary C code embedded,
within { … }. E.g.:

A : B1 { printf(“after B1\n”); x = 0; } B2 { x++; } B3;

 Left-recursion more efficient than right-recursion:
– A : A x | … rather than A : x A | …

Specifying Operator Properties

 Binary operators: %left, %right, %nonassoc:
 Associativity of operator

%left '+' '-'

%left '*' '/'

%right '^'

Operators in the same group
have the same precedence

Across groups, precedence

29

 Unary operators: %prec

 Changes the precedence of a rule to be that of the token
specified. E.g.:

%left '+' '-'

%left '*' '/'

Expr: expr ‘+’ expr

| ‘–’ expr %prec ‘*’

| …

Across groups, precedence
increases going down.

Specifying Operator Properties

 Binary operators: %left, %right, %nonassoc:
%left '+' '-'

%left '*' '/'

%right '^‘

Operators in the same group
have the same precedence

30

 Unary operators: %prec

 Changes the precedence of a rule to be that of the token
specified. E.g.:

%left '+' '-'

%left '*' '/‘

Expr: expr ‘+’ expr

| ‘–’ expr %prec ‘*’

| …

Specifying Operator Properties

 Binary operators: %left, %right, %nonassoc:
%left '+' '-'

%left '*' '/'

%right '^‘

Operators in the same group
have the same precedence

Across groups, precedence

31

 Unary operators: %prec

 Changes the precedence of a rule to be that of the token
specified. E.g.:

%left '+' '-'

%left '*' '/'

Expr: expr '+' expr

| '–' expr %prec '*'

| …

Across groups, precedence
increases going down.

The rule for unary ‘–’ has the
same (high) precedence as ‘*’

Yacc: Error Handling

 The “token” ‘error’ is reserved for error handling:
 Can be used in rules;

 Suggests places where errors might be detected
and recovery can occur.

32

Example:

stmt : IF '(' expr ')' stmt

| IF '(' error ')' stmt

| FOR …

| …

Intended to recover from errors in ‘expr’

Error Messages

 On finding an error, the parser calls a function
void yyerror(char *s) /* s points to an error msg */

 user-supplied, prints out error message.

33

 More informative error messages:
 int yychar: token no. of token causing the error.

 user program keeps track of line numbers, as well
as any additional info desired.

Error Messages: example

#include "y.tab.h"
extern int yychar, curr_line;
static void print_tok()
{

if (yychar < 255) {
fprintf(stderr, "%c", yychar);

}

void yyerror(char *s)

{

fprintf(stderr,

"[line %d]: %s",

curr_line,

s);

34

}
else {

switch (yychar) {
case ID: …
case INTCON: …
…
}

}
}

print_tok();

}

Adding Semantic Actions

 Semantic actions for a rule are placed in its
body:
 an action consists of C code enclosed in { … }

 may be placed anywhere in rule RHS

35

Example:

expr : ID { symTbl_lookup(idname); }

decl : type_name { tval = … } id_list;

 End of Chapter # 9

36

