Chapter # 9
LEX and YACC

Dr. Shaukat Ali
Department of Computer Science
University of Peshawar

Lex and Yacc :

e Lex and yacc are a matched pair of tools.

e Lex breaks down files into sets of "tokens,"
roughly analogous to words.

e Yacc takes sets of tokens and assembles them
iInto higher-level constructs, analogous to
sentences.

e Lex's output is mostly designed to be fed into
some kind of parser.

e Yacc is designed to work with the output of Lex.

Lex and Yacc :

e Lex and yacc are tools for building programs.

Their output is itself code
Which needs to be fed into a compiler

May be additional user code is added to use the code
generated by lex and yacc

Lex : A lexical analyzer generator

e Lex is a program designed to generate

scanners, also known as tokenizers, which

recognize lexical patterns in text

e Lex is an acronym that stands for "lexical
analyzer generator.”

e The main purpose is to facilitate lexical analysis

The processing of character sequences in source
code to produce tokens for use as input to other

programs such as parsers

e Another tool for lexical analyzer generation is

Flex

Lex : A lexical analyzer generator

lexd ——— Lex Compiler — lex.yy.c
lexyyc ——— Compiler e a.out
Input S Sequence of

stream tokens

e Jlex.lex is an a input file written in a language which describes the
generation of lexical analyzer. The lex compiler transforms /ex./ to a

C program known as /ex.yy.c.
e lex.yy.cis compiled by the C compiler to a file called a.out.

e The output of C compiler is the working lexical analyzer which takes

stream of input characters and produces a stream of tokens.

Lex: A lexical analyzer generator

Structure of Lex Specification File

v Definitions
F.
%%\

> Rules

s
%%

User subroutines

red: required
blue : optional

Lex: A lexical analyzer generator |2

snazzle lex:

%
#include <iostream:>
%}
ok
B
[8-9]+\.[@-9]+ { cout << "Found a floating-point number:"” << yytext << endl; }
[@-9]+ { cout << "Found an integer:" << yytext << endl; }
[a-zA-Z28-9]+ { cout << "Found a string: " << yytext << endl; }
ik
main() {
/! lex through the input:
: yylex();

e Lex file has three sections.
The first is sort of "control” information,

The second is the actual token or grammar rule
definitions,

The last is C code to be copied verbatim to the output.

Lex: A lexical analyzer generator |2

e Lines 1 through 3 are more C code to be copied.

In the control section, you can indicate C code to
be copied to the output by enclosing it with "%{"
and |I%}“

This section includes include files, declaration of
variables, and constants

We wouldn't need one at all if we didn't use cout in
the middle section

e Line 4is "%%", which means we're done with the
control section and moving on to the token
section.

Lex: A lexical analyzer generator |2

e Lines 5-8 are all the same (simple) format: they
define a regular expression and an action (code
segment).

Form : Pattern {Action}
Pattern is regular expression and action is code segment
When lex is reading through an input file and can

match one of the regular expressions, it executes
the action.

The action is just C++ code that is copied into the
eventual lex output

You can have a single statement or you can have
curly braces with a whole bunch of statements. 9

Lex: A lexical analyzer generator |2

e Line 9 is another "% %" delimiter, meaning we're done
with the second section and we can go onto the third.

e Lines 10-13 are the third section, which is exclusively for
copied C code.

main() function — containing important call to yylex()
function

Additional functions which are used in actions

These functions are compiled separately and
loaded with lexical analyzer in the Lex output file

10

Lex: A lexical analyzer generator |2

e Lexical analyzer produced by lex starts its
process by reading one character at a time until
a valid match for a pattern is found

e Once a match is found, the associated action
takes place to produce token

e The token is then given to parser for further
processing

11

Lex: A lexical analyzer generator

e Operators: "\[]"-?2.*|()$/{}% <>
e Letters and digits match themselves

e Period °." matches any character (except
newline)

e Brackets [] enclose a sequence of characters,

termed a character class. This matches:
Any character in the sequence

A '-" in a character class denotes an inclusive range,

e.g.: [0-9] matches any digit.

A " at the beginning denotes negation: ["0-9] matches

any character that is not a digit.

12

Lex: A lexical analyzer generator |2

e A quoted character " " matches that character.
e \n, \t match newline, tab.

e parentheses () grouping

e Bar | alternatives

e Star * zero or more occurrences

e + ONe Or more occurrence

e 7 zero or one occurrence

13

O
o
O
Operators :
Metacharacter | Matches
: any character except newline
\n newline
* Zzero or more copies of the preceding expression
+ one or more copies of the preceding expression
? Zero or one copy of the preceding expression
% beginning of line
i end of line
alb aorb
(ab) + one or more copies of ab (grouping)
"a+b" literal "a+b" (C escapes still work)

[]

character class

14

Lex: A lexical analyzer generator |2:¢

Examples of Lex Rules

15

Lex: A lexical analyzer generator |2:¢

Choosing between different possible matches:

When more than one pattern can match the input, lex chooses
as follows:

1. The longest match is preferred.

2. Among rules that match the same number of characters,
the rule that occurs earliest in the list is preferred.

Example : the pattern

uj,!nrl*n{_ I\n) *n*"nffn

(intended to match multi-line comments) may consume all the
input!

16

Lex: A lexical analyzer generator

Lex source definitions

e Any source not intercepted by lex is copied into the gener-
ated program:

— aline that is not part of a lex rule or action, which begins
with a blank or tab, is copied out as above (useful for,
e.g., global declarations)

— anything included between lines containing only % { and
%} is copied out as above (useful, e.qg., for preprocessor
statements that must start in col.1)

— anything after the second %% delimiter is copied out af-
ter the lex output (useful for local function definitions).

e Definitions intended for lex are given before the first 3%. Any
line in this section that does not begin with a blank or tab,
or is not enclosed by 2 {...%}, is assumed to be defining
a lex substitution string of the form

name translation
B

letter [a—zA-7]

17

3 coo
[
¥include "tokdefs.h" 0000
#include <strings.h> ::.
static int id or keywd(char *s}; o
%}
letter [a—zA-7]
digit [0-9]
alfa [a-Z2R-F0-0]
whitesp [\th\n]
%%
{whitespl}* :
{comment } H
{letter}{alfal REPDRT[id_ﬂr_keywd{yytext], yytext);
%%

static struct |
char *name;
int val;

} keywd entry,

keywd table[] = {
g 7o 1) i CHAR,
s 5 4 rpp TNT,
"while", WHILE,

)i

18

static int id or keywd(s)

Lex: A lexical analyzer generator |2

e This example can be compiled by running this:
% lex snazzle.lex

e This will produce the file "lex.yy.c", which we can
then compile with g++:

% g++ lex.yy.c -Ifl -0 snazzle

e Notice the "-Ifl", which links in the dynamic lex
libraries

19

Lex: A lexical analyzer generator |2

e You should be able to run it and enter stuff on STDIN to be lexed:
% .Ishazzle
90
Found an integer:90
234
Found a floating-point number:23.4
456
Found an integer:4
Found an integer:5
Found an integer:6
this is text!
Found a string: this
Found a string: is

Found a string: text
!

20

Yacc: Overview e

Parser generator:
Takes a specification for a context-free grammar.
Produces code for a parser.

Output: C code

Input: a set of yacc implementing a parser:
grammar rules —— function: yyparse()
and actions (or bison) '

file [default]: y.tab.c

21

Using Yacc

lexical rules

l

flex

input —

-

———’

grammar rules

l

yacc ~ [-Yace-v”
\ 4
parsed
yyparse() > input

describes
states,
transitions
of parser
(useful for
debugging)

22

Communication between Scanner |se:

and Parser -

e Yacc determines integer representations for tokens:
Communicated to scanner in file y.tab.h
use “yacc -d” to produce y.tab.h
Token encodings:
“end of file” represented by ‘0’;
A character literal: its ASCII value;
Other tokens: assigned numbers > 257.

e Parser assumes the existence of a function ‘int yylex()’
that implements the scanner.

e Scanner:
Return integer value indicates the type of token found
Values communicated to the parser using yytext, yylval

yytext determines lexeme of a token and yylval determines a
iInteger assigned to a token

A quick tytorial on yacc 23

The token error is reserved ftor error handling

Communication between Scanner |ee.
and Parser set

e Suppose the grammar spec s in a file foo.y. Then:

- The command 'vacc foo.y yieldsafile y.tab.ccon-
taining the parser constructed by yacc.

= The command ‘vacc -d foo.y constructsafiley.tab.h
that can be #include’d into the scanner generated by
lex.

- Thecommand ‘'yvacc -v foo.y additionally constructs
a file y.output containing a description of the parser
(useful for debugging).

e The user needs to supply a function main () to driver, and
a function yyerror () that will be called by the parser if
there is an error in the input.

24

yacc: input format

A yacc input file has the following structure:

definitions
required — [%% \
rules <

\ .
— optional

U

user code

Shortest possible legal yacc input:

%%

} Declarations

%%

red :
blue :

Grammar rules
%%

Programs

required
optional

25

int yyparse() :

e Called once from main() []

e Repeatedly calls yylex() until done:
On syntax error, calls yyerror() []
Returns O if all of the input was processed,;
Returns 1 if aborting due to syntax error.

Example:

int main() { return yyparse(); }

26

Yacc: Grammar Rules e

e Information about tokens:

Token names:
Declared using ‘%token’
%token name1 name?Z2 ...

Any name not declared as a token is assumed to be a
nonterminal.

Start symbol of grammar, using ‘%start’ [optional]
%start name

If not declared explicitly, defaults to the nonterminal on the
LHS of the first grammar rule listed

Stuff to be copied verbatim into the output (e.g.,
declarations, #includes): enclosed in %{ ... }%

27

Yacc: Grammar Rules

Grammar production vacc rule
A>B,B,..B_ A:B,B,...B,;
B—>C,C,..C, M B8:CC,..Cp

C_)D1 DZ"'Dk C-D1 D2-- Dk;

m?

e Rule RHS can have arbitrary C code embedded,

within { ... }. E.qg.:

A : B1 { printf(“after B1\n"); x = 0; } B2 { x++; } B3;

e Left-recursion more efficient than right-recursion:

A:Ax|... ratherthan A:xA]|...

28

Specifying Operator Properties s

e Binary operators: %left, %right, %nonassoc:

Associativity of operator
Yleft '+ -
Yleft ™" '/
%right ' '

e Unary operators: %prec

Across groups, precedence
increases going down

Changes the precedence of a rule to be that of the token

specified. E.g.:
%left '+' '-'
Yleft ™ /'
Expr: expr ‘“+’ expr
| ‘=" expr Y%prec ™

29

Specifying Operator Properties s

e Binary operators: %left, %right, %nonassoc:

ofleft "' /' Operators in the same group
have the same precedence

Y%right "N

e Unary operators: %prec

Changes the precedence of a rule to be that of the token
specified. E.g.:
%oleft '+ -
%left ™ '/
Expr: expr ‘“+’ expr
| ‘=" expr Y%prec ™

30

00
Specifying Operator Properties 13
Binary operators: %left, %right, %nonassoc:
%left '+ -
%left ™' '/
%right '

Unary operators: %prec
» Changes the precedence of a rule to be that of the token

specified. E.g.:
%left '+' -
0 %t N
é;'(e:t N r/'+' o The rule for unary ‘~ has the
pr: exp P same (high) precedence as ™

| = expr %prec ™'

31

Yacc: Error Handling :

e The "token” ‘error’ is reserved for error handling:
Can be used in rules;

Suggests places where errors might be detected
and recovery can occur.

Example:

stmt : IF '(" expr')' stmt
IF '(' error ')’ stmt
FOR ...

32

Error Messages

e On finding an error, the parser calls a function
void yyerror(char *s) /* s points to an error msg */
» user-supplied, prints out error message.

e More informative error messages:
» int yychar: token no. of token causing the error.

» user program keeps track of line numbers, as well
as any additional info desired.

33

Error Messages: example 43

#include "y.tab.h"
extern int yychar, curr_line;
static void print_tok()
{
if (yychar < 255) {
fprintf(stderr, "%c", yychar);
}
else {
switch (yychar) {
case ID: ...
case INTCON: ...

void yyerror(char *s)
{
fprintf(stderr,
"[line %d]: %s",
curr_line,
s);
print_tok();
}

34

Adding Semantic Actions 4

e Semantic actions for a rule are placed in its
body:
» an action consists of C code enclosed in{ ... }
» may be placed anywhere in rule RHS

Example:
expr . ID {symTbl lookup(idname); }

decl : type name {tval = ... } id_list;

35

e End of Chapter # 9

36

